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Abstract

Introduction—Off-road trucks are one of the major sources of equipment-related accidents in 

the U.S. mining industries. A systematic analysis of all off-road truck-related accidents, injuries, 

and illnesses, which are reported and published by the Mine Safety and Health Administration 

(MSHA), is expected to provide practical insights for identifying the accident patterns and trends 

in the available raw database. Therefore, appropriate safety management measures can be 

administered and implemented based on these accident patterns/trends.

Methods—A hybrid clustering-classification methodology using K-means clustering and gene 

expression programming (GEP) is proposed for the analysis of severe and non-severe off-road 

truck-related injuries at U.S. mines. Using the GEP sub-model, a small subset of the 36 recorded 

attributes was found to be correlated to the severity level.

Results—Given the set of specified attributes, the clustering sub-model was able to cluster the 

accident records into 5 distinct groups. For instance, the first cluster contained accidents related to 

minerals processing mills and coal preparation plants (91%). More than two-thirds of the victims 

in this cluster had less than 5 years of job experience. This cluster was associated with the highest 

percentage of severe injuries (22 severe accidents, 3.4%). Almost 50% of all accidents in this 

cluster occurred at stone operations. Similarly, the other four clusters were characterized to 

highlight important patterns that can be used to determine areas of focus for safety initiatives.

Conclusions—The identified clusters of accidents may play a vital role in the prevention of 

severe injuries in mining. Further research into the cluster attributes and identified patterns will be 

necessary to determine how these factors can be mitigated to reduce the risk of severe injuries.

Practical application—Analyzing injury data using data mining techniques provides some 

insight into attributes that are associated with high accuracies for predicting injury severity.
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1. Introduction

Analysis of workplace injuries has been heavily utilized as a means to determine high-risk 

tasks, prioritize workplace redesign, and determine areas of concern for worker safety in 

many industries including healthcare, construction, retail and services, and mining (Cato, 

Olson, & Studer, 1989; Drury, Porter, & Dempsey, 2012; Mardis & Pratt, 2003; Moore, 

Porter, & Dempsey, 2009; Pollard, Heberger, & Dempsey, 2014; Schoenfisch, Lipscomb, 

Shishlov, & Myers, 2010; Turin, Wiehagen, Jaspal, & Mayton, 2001; Wiehagen, Mayton, 

Jaspal, & Turin, 2001). While many industries would require injury records from individual 

companies or insurance providers to perform an analysis, mining is uniquely suited for a 

more comprehensive injury analysis. An important feature of U.S. mining is the accessibility 

of injury records. The Mine Safety and Health Administration requires all mine operators 

and contractors to file a Mine Accident, Injury and Illness Report (MSHA Form 7000-1) for 

all reportable accidents, injuries, and illnesses incurred at U.S. mining facilities. Reportable 

illnesses include any illness or disease that may have resulted from work. The database of 

these reports is available in the public domain and is provided by the National Institute for 

Occupational Safety and Health (http://www.cdc.gov/niosh/mining/data/default.html). Each 

entry of the database contains 36 unique attributes including: mine id, mining method, 

accident date, degree of injury, accident classification, mining equipment, employee's 

experience and activity, and a narrative briefly explaining the accident. Previous mining 

research has examined the injury and fatality causes associated with maintenance and repair, 

haulage vehicles, ingress and egress from mobile equipment, operating underground and 

surface mining mobile equipment, and other mining tasks (Drury et al., 2012; Moore et al., 

2009; Pollard et al., 2014; Reardon, Heberger, & Dempsey, 2014; Turin et al., 2001; 

Wiehagen et al., 2001). Traditional injury data analysis uses counts and cross-tabulations as 

a means to determine trends in injuries. While this typically yields useful information, more 

sophisticated data mining techniques may allow for more improved classification of injuries 

through identification of injury patterns.

Clustering and classification are the two widely used methods of data mining for the purpose 

of pattern recognition. Clustering is among the unsupervised methods of pattern recognition 

while the classification is a supervised learning method. By an unsupervised method, one 

means that the data analyzer does not have any prior hypothesis or pre-specified models for 

the data, but wants to understand the general characteristics or the structure of the high-

dimensional data. A supervised method means that the investigator wants to confirm the 

validity of a hypothesis/model or a set of assumptions, given the available data (Jain, 2010). 

Clustering and classification are also called un-labeled and labeled, respectively. In pattern 

recognition, data analysis is concerned with predictive modeling: given some training data, 

the prediction task is to find the behavior of the unseen test data. This task is also referred to 

as learning. Often, a clear distinction is made between learning problems that are (i) 
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supervised (classification) or (ii) unsupervised (clustering), the first involving only labeled 

data (training patterns with known category labels), while the latter involves only unlabeled 

data (Duda, Hart, & Stork, 2001; Jain, 2010). Clustering and classifications are performed 

using differing algorithms but may be used together to improve prediction accuracy.

The aim of this research was to gain a better understanding of the factors associating with 

severe injuries (fatalities and permanent disabilities) in U.S. mining by employing data 

mining techniques. Clustering and classification were employed for a comprehensive 

analysis of off-road truck-related accidents and injuries reported to MSHA during a 13-year 

period (2000–2012). Gene expression programming was used for classification, allowing all 

injury attributes to be considered and tested to determine which were associated with the 

highest prediction accuracies. The most explanatory attributes were selected among the 

available 36 unique attributes in the MSHA database. Then, K-means clustering was used as 

a means to identify similarity/dissimilarity between the accident records using the selected 

attributes for the purposes of pattern recognition in the raw data. It should be noted that the 

goal of this study was not to establish cause–effect relationships between accident attributes 

and outcomes, but to: (a) use data mining to systematically identify important attributes from 

MSHA incident reports that are highly associated with the outcomes of accidents 

(classification), and (b) recognize patterns in the accidents (clustering) given a set of work-

related attributes.

2. Materials and methods

2.1. MSHA injury data

A dataset comprised of 13 years (2000–2012) of Mine Accident, Injury and Illness Reports 

was selected beginning with 1/1/2000 (MSHA, 2014). From this dataset, records of severe 

injuries (fatalities and permanent disabilities) and non-severe injuries associated with off-

road trucks were selected. The NIOSH code “minemach-44, all accidents related to off-road 

mining trucks” was identified to select the records of interest in this study. A total of 5,831 

records of injuries (both severe and non-severe) were filtered for further analysis. This 

dataset included 125 severe records that affected 140 employees. These severe injuries 

consisted of 88 fatalities and 52 permanent disabilities. These records were analyzed using 

Minitab (Minitab Inc., State College, Pennsylvania), MATLAB (MathWorks, Inc., Natick, 

Massachusetts), Rapidminer (RapidMiner, Inc., Cambridge, Massachusetts) and 

GenExprotools (Gepsoft Limited, Bristol, UK) to determine factors associated with the 

highest counts of severe injuries.

2.2. GEP-clustering modeling

The objective of clustering is to discriminate between dissimilar data by dataset partitioning 

(clustering). As an unsupervised data mining technique, the aim of clustering is to split a 

heterogeneous dataset into several more homogenous groups. The optimization task is to 

maximize the similarity between the in-cluster members and dissimilarity between the out-

cluster members. K-means clustering is used to partition a large, highly variable dataset such 

that like data are grouped together. As an example, one is given a set of n data points in d-

dimensional space (Rd) and an integer k. The goal is to determine a set of k points in Rd, 
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called centers, so as to minimize the mean squared distance from each data point to its 

nearest center (Kanungo et al., 2002). Let X = {xi}, i = 1, …, n,be the d-dimensional 

observations which are clustered into a set of k clusters, C = {ck, K = 1, …, K}. The K-

means clustering finds a partition such that the squared error between the empirical mean of 

a cluster and the points in the cluster is minimized. Let μk be the mean of the cluster ck. The 

squared error between μk and the points in cluster ck is defined as shown in Eq. (1). The goal 

of K-means clustering is to minimize the sum of the squared error over all k clusters as 

shown in Eq. (2). (For a detailed review of the theory and background of K-means clustering 

see: Halkidi et al., 2001, Fraley and Raftery, 2002, Jain, 2010.)

(1)

(2)

Genetic programming (GP) creates a functional relationship between inputs (attributes) and 

outputs to predict the occurrence of the output based on the properties of the attributes. 

Genetic programming can be represented as a hierarchically structured tree comprising 

functions and terminals. Fig. 1 illustrates a simple representation of a GP tree for the 

function Coshx/(C1sinx). The tree reads from left to right and from bottom to top. 

Mimicking the Darwinian principle of survival, the fittest solutions (smallest error) are 

chosen to generate a population of new offspring programs for the next generation (Koza, 

1992). In the next step, some genetic operations, namely mutation and crossover, will 

generate new offspring from the fittest programs of the previous generation. The operator 

selects a random node in a tree and replaces it with another node or subtree. The new 

offspring will be evaluated with the error or fitness function. The process continues until 

reaching a predefined threshold in terms of the best fit or error. In GP, thousands of solutions 

(computer programs) are generated and evolved consecutively based on the Darwinian 

principle of survival. The search for the solution starts with a population of completely 

randomly generated programs (solutions) from a predefined set of available functions (e.g., 

arithmetic functions) and terminals (independent variables). All programs are measured 

against a fitness function (e.g., root mean square error in a regression problem) and the best 

ones survive and are bred to the next generation.

Proposed by Ferreira (2001), gene expression programming (GEP) is a development of the 

conventional GP. As with GP, in GEP the main steps include: the function set, terminal set, 

fitness function, control parameters, and stop criteria. The fundamental difference between 

GP and GEP resides in the nature of the individuals. In GP the individuals are nonlinear 

entities of different sizes and shapes (parse trees). In GEP the individuals are also nonlinear 

entities of different sizes and shapes (expression trees), but these complex entities are 

encoded as simple strings of fixed length (chromosomes). The chromosomes in this study 

Dindarloo et al. Page 4

J Safety Res. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are the attributes of each record of injuries (60 attributes and 5831 records). Unlike the parse 

tree representation in conventional GP, GEP uses a fixed length of character strings to 

represent solutions to the problems, which are afterwards expressed as parse trees of 

different sizes and shapes. These trees are called GEP expression trees (ETs). One advantage 

of the GEP technique is that the creation of genetic diversity is extremely simplified as 

genetic operators work at the chromosomal level. Another GEP strength is its unique, multi-

genic nature that allows the evolution of more complex programs composed of several 

subprograms. The GEP algorithm begins with an initial population of chromosomes, which 

are randomly generated, linear strings of a fixed length. Then, the linear chromosomes are 

expressed as ETs and the fitness of each individual is evaluated based on a predefined fitness 

function. The individuals are then selected, according to fitness, to form a new generation—

i.e., the higher the fitness value, the more chance an individual has to be selected. The 

selected individuals are also subjected to reproduction with modification, through genetic 

operators like crossover, mutation, and rotation. The individuals of this new generation are, 

in their turn, subjected to the same developmental process: expression of the genomes, 

selection, and reproduction. The process is repeated for a certain number of generations or 

until a solution has been found.

The GEP algorithm was used for classification of the off-road truck-related injury dataset. 

The objective was to identify the most explanatory (independent) variables (attributes) to be 

used in the subsequent clustering sub-model. One advantage of GEP over conventional 

classification algorithms (such as support vector machines and artificial neural networks) is 

that it can select the best explanatory features to achieve the highest fitness or accuracy. 

Hence, all available independent variables included in the incident reports, including both 

the categorical and numerical variables, were initially used in the GEP model building as 

explanatory variables. The injury severity was converted into a binary variable with: class 0 

for those severe truck-related incidents that resulted in either fatalities or permanent 

disabilities, and class 1 for all other injuries. Two-thirds of the records (3,888) were used for 

training the algorithm and the remaining (1,943) for model testing. The fitness function was 

set as the sensitivity/specificity to achieve maximum classification accuracy. K-means 

clustering was used to group similar injuries therefore maximizing the similarity of records 

in each cluster. All data (both severe and non-severe) were analyzed together and separated 

into clusters.

3. Results

3.1. MSHA injury data overview

A brief analysis of the MSHA injury data was performed to give an understanding of the 

types of data available in the injury records. A temporal illustration of off-road truck-related 

fatalities and disabilities (Fig. 2) shows fluctuations in the fatality and disability counts over 

the years with a clear decreasing trend. The distribution of accident types is shown in Fig. 3. 

An analysis of the type of mine operation found that most severe injuries occurred at surface 

mines that use strips, quarries, or open pits as shown in Fig. 4. Employee job experience was 

also examined as shown in Fig. 5a. Frequencies of severe versus other injuries among 

victims of different job experiences are illustrated in Fig. 5b. Nearly half of the affected 
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employees had less than 5 years of job experience. Work activity at the time of injury was 

also examined as shown in Fig. 6.

Most of the severe injuries were sustained while the employee was operating the off-road 

truck. In the 56 severe accidents (57 victims) that occurred while operating a truck, 46 

employees sustained fatal injuries and 11 employees were permanently disabled. The four 

main causes of these accidents (as identified in the report of the MSHA investigation) were: 

(i) losing control of the truck, (ii) berm/dump failure, (iii) unsafe/careless actions, and (iv) 

truck/component mechanical failure. In the category of “unsafe/careless actions,” MSHA 

identified that the underlying root causes were either associated with poor safety training, 

management and enforcement with managerial causes, or failure of the employees to obey 

safety regulations (personal issues). In nearly all of the 26 accidents (affecting 27 victims) 

that occurred during the “maintenance/repair” activity, either the employees' failure to regard 

safety regulations or a component/equipment malfunction/failure caused the injuries. A 

major cause of fatalities in this category was failure to block off/lockout the truck/bed. This 

was either due to the employees' unsafe actions or the mechanical malfunction of the 

equipment. In the “other” category, 17 fatal accidents resulted in 15 fatalities and 7 

permanent disabilities. The main causes of this category were: (i) the operator(s) exited the 

cab while operating the equipment and (ii) unsafe/careless minor repairing attempts.

3.2. Results of gene expression programming

Gene expression programming utilized all available variables in the incident records to 

determine those that best predicted injury severity. The important GEP parameters (number 

of chromosomes, head size, and number of genes) were determined through a grid search 

algorithm to achieve the maximum classification accuracy. A grid search is an exhaustive 

search in the pre-specified domains of the parameters of interests. In this case, using the grid 

search, the best results (highest accuracies) were achieved when the three parameters were 

set to 34, 11, and 5, respectively. The resulting best model is shown in the GEP expression 

tree in Fig. 7 with the key in Table 1. The two classes are “severe” and “other injuries.” 

Results of this programming elicited five attributes that best explained the injury severity. 

These attributes were: the operation subunit (NIOSH code “subunit”), the month of the year 

in which the accident occurred (NIOSH code “month”), the victim's job experience at the 

time of the accident (NIOSH code “expjob”), the employee's activity at the time of the 

accident (NIOSH code “mwactiv”), and the type of operation (NIOSH code “commod,” 

including: coal, metal, non-metal, stone, sand & gravel operators, as well as, coal and non-

coal contractors). The overall classification accuracies of 64.55% and 65.65% were obtained 

for the training and testing datasets, respectively. The classification accuracies for the severe 

injury class and the all other injuries class in the testing dataset were 63.04% and 64.69%, 

respectively (see Table 2).

In order to examine the accuracy of the GEP classification algorithm, the whole database 

was modeled with the widely-used traditional method of logistic regression for binary 

classification (Cox, 1958). In a binary logistic regression, the dependent variable is a two-

class categorical variable. Here, the two classes were severe and non-severe accidents. The 

objective of the regression was to classify the dataset using the available attributes. Similar 
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to GEP, the logistic regression builds a relationship between the (categorical) dependent 

variable and (a combination of categorical, ordinal, and numerical) independent variables 

(attributes). A logistic regression model assigns to each set of attributes a number between 0 

and 1. This output can be interpreted as the probability of a set of attributes belonging to 

each class. For instance, an output value equal to 0.3 means that the accident (given its 

attributes) is a non-severe one (class 0) with a probability of 70% and a severe accident 

(class 1) with a probability of 30%. Using the same training, testing, and attribute sets as the 

GEP, the results of logistic regressions were obtained for the whole dataset and are 

compared with the GEP results in Table 2. GEP had a superior performance compared to 

logistic regression resulting in a more accurate classification of both severe and non-severe 

accidents.

3.3. Results of K-means clustering

Using the GEP sub-model's output, the resulting clusters from the K-means clustering were 

defined based on their most dominant attribute, which discriminated them from the other 

clusters while maintaining the highest similarity inside the cluster. Therefore, the clusters 

were defined based on their attributes as specified in Table 3a. The optimal number of 

clusters was identified using the GAP Statistics method (Tibshirani, Walther, & Hastie, 

2001). Five clusters were created as defined in Table 4. The number of incidents in each 

cluster and the average job experience of employees at the time of the accident are provided 

in Tables 3a, 3b, 3c, and 3d along with the dominant subunit and activity, operation, and 

month codes for each cluster. The activity, operation type, and subunit codes in Table 3a are 

defined in Tables 3b–3d. The last column in Table 3a shows the number (percentage) of 

severe accidents (Codes 1 and 2) inside each of the five proposed clusters. In summary, 

Tables 3a, 3b, 3c, and 3d show the most discriminating attribute(s) for each cluster. For 

instance, in cluster 0, the operation code 4 (stone operator) is dominant (48%). This means 

almost half of the severe injuries were occurred in the “stone operator” classification. Over 

two-thirds (72%) of the victims had less than 5 years of “job experience.” Also, the 

dominant subunit code was 9 (i.e., mill or preparation plants, see Table 3d), which includes 

over 90% of this cluster's accidents. Similarly, the major activity codes, in cluster 0, were 1 

and 5 (see Table 3b) which implied that the two activities of “getting on/off truck” and 

“driving off-road truck” were associated with 72% of the accidents during the period 2000–

2012. In this cluster, a total of 22 fatalities and permanent disabilities have been recorded 

that account for 3.4% of the total reported accidents (including non-severe ones).

4. Discussion and conclusions

Truck-related fatalities have been previously examined in the literature. An analysis of fatal 

truck-related accidents during the period 1995–2006 revealed the three most frequent causes 

of the haul truck-related fatalities as: (i) failure of victims to respect haul truck working area, 

(ii) failure to provide adequate berms, and (iii) failure of mechanical components (Md-Nor, 

Kecojevic, Komijenivic, & Groves, 2008). Another study within the period of 1995–2002 

(Kecojevic & Radomsky, 2004) categorized the major causes of fatalities as follows: (i) 

failure of mechanical components (22%); (ii) lack of and/or failure to obey warning signals 

(20%); (iii) failure to maintain adequate berm (13%); (iv) inadequate hazard training (10%); 
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and (v) failure to recognize adverse geological conditions (10%). Kecojevic and Radomsky 

(2004) associated 70% of all fatalities to the above five categories, which are consistent with 

the results of studies for periods 1995–2006 and the current study. Ruff, Coleman, and 

Martini (2011) studied the equipment-related fatalities for the period 2000–2007 and found 

that, for mobile equipment, the most frequent fatalities were related to loss of control or 

visibility issues during the operation of the equipment. A more recent analysis examined 133 

fatality reports for the period 1995–2010 using a previously developed coding scheme to 

determine repeating patterns of accidents (Drury et al., 2012). In this work, the authors were 

able to more fully develop the classification patterns previously reported by Wenner and 

Drury (2000). This scheme was broken into driving and non-driving accidents. Under 

driving, the factors included: loss of control, failure of ground, two-vehicle collisions, 

mechanical failure (sudden and inadequate performance), and leaving the driving track. 

Under non-driving, the factors included: unexpected movement (of the vehicle or part of the 

vehicle or vehicle's load), falls from vehicle, and hit by other vehicle. Comparison of the 

results of these previous studies with the current study reveals that the root causes of truck-

related fatalities have not changed in the past two decades. A new method to determine 

factors associated with these injuries is needed.

Gene expression programming was found to successfully predict severe accidents in mining 

based on available injury data. The accuracies obtained using GEP for both the training and 

testing data are comparable or superior to those reported in car and traffic accident studies 

(Abdelwahab & Abdel-Aty, 2001; De Oña, López, Mujalli, & Calvo, 2013; De Oña, Mujalli, 

& Calvo, 2011; Mujalli & De Oña, 2011). Therefore, the GEP model's inputs (variables) had 

the highest explanatory characteristics, among 36 attributes, for severity estimation. The 

break-down of injuries within the clusters was quite interesting.

Minerals processing mills and coal preparation plants essentially formed their own cluster 

(cluster 0). Therefore, there appears to be a unique element to these plants that created 

different truck-related injury scenarios from the other subunits. Typically, this subunit 

includes mills, coal preparation plants, breaker operations, shops, and yards associated with 

one specific mine. These are non-production locations and likely utilize differing types of 

equipment and have different geographies and layouts from the pits or underground mining 

locations. Also of the 653 incidents in this cluster, in the past 13 years about 31% of all 

accidents (203 instances) happened during June–August. The main reason(s) behind the high 

accident rates during these months should be examined in a case by case manner for all of 

the mining sites in this cluster. Therefore the root cause(s) for the higher accident rates 

cannot be identified for this particular cluster of mining sites. Furthermore, per Table 3a over 

70% of the victims had job experiences in the range of 0–5 years. Therefore, the 

inexperienced crews in all of the mining sites in cluster 0 experienced more accidents than 

other four clusters. The distribution of these inexperienced workers within this cluster as 

compared to the other clusters is not known so determining the relative rates of accidents 

was not possible. However, the high number of accidents in the inexperienced worker can 

justify implementing further training and safety measures. Additionally, over 70% of all off-

road truck-related accidents happened when the truck operators were either getting on/off 

the trucks or when they were operating the trucks. Previous research has identified the safety 

issues associated with getting on and off of mobile equipment (Moore et al., 2009). Thus 
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future safety improvement plans for this cluster of mining operations should focus on the 

root causes of ingress and egress injuries as well as those injuries sustained during operation 

of these trucks.

The interesting pattern in Cluster 1 is that in 55% of all cases, the victim had been inspecting 

the truck for maintenance/repair with non-powered hand tools. Moreover, over half of the 

accidents were related to either the coal or stone operators. Although this cluster did not 

include any severe injuries, it is clear that the use of hand tools for vehicle inspection creates 

a hazard at mines. Also similar to cluster 0, in this cluster the highest numbers of accident 

were recorded in June–August period. Unlike cluster 0, in cluster 1 the share of the 

inexperienced employees for all of the accidents is not very high with respect to more 

experienced employees. Also, a majority of the accidents (78%) took place in either strip or 

open pit mines.

With 2,352 accidents, cluster 2 was the largest cluster in this study. Interestingly all of the 

accidents in the past 13 years in this cluster happened in the second half of the year. 

Although it is not within the scope of this study to analyze the root causes or contributing 

factors for this unique pattern, it provides a well-justified guideline for conducting future, 

more in-depth analyses to determine activities or tasks associated with high numbers of 

accidents. Also, similar to cluster 1, in the past 13 years most of the accidents in this cluster 

happened in surface (strip or open pit) mines. In summary, cluster 2 showed that ingress and 

egress from off-road trucks is still a problem and requires immediate attention.

With 187 accidents, cluster 3 was the smallest cluster in this study. Similar to cluster 1, no 

severe accidents had been reported since 2000. Over 60% of the accidents were associated 

with a non-specified activity and coded as code 6 (other). Therefore, the activities preceding 

accidents in this cluster were not within the more frequent accident causing activities (e.g., 

getting on/off truck, handling supplies). In terms of the victim job experience this cluster did 

not differ from clusters 1, 2, and 4 (see Table 3a).

Similar to cluster 2, one interesting pattern in cluster 4 is that no accident (severe or non-

severe) had been recorded in one half of the year. Unlike cluster 2, all of the accidents in 

cluster 4 occurred in the first half of the year since 2000. Again, this pattern (along with the 

pattern in cluster 2) is a reasonable justification for conducting seasonal studies for 

improving safety in all of the mining sites in this cluster. Thus, the main reasons for zero 

accidents in the first half of each year and a total of 2,192 in the second half should be 

identified. Also, nearly 90% of these accidents occurred at surface mines. Cluster 4 was also 

found to have the highest number of severe accidents. More in-depth analysis would need to 

be conducted to determine the key differences between the accidents in clusters 2 and cluster 

4 to determine what appears to be a seasonal division in accidents contributing to increased 

accident severity. More training may be needed to address the injuries in this cluster.

This study was limited to data associated with off-road trucks in mining. Thus all other 

injuries that were not associated with off-road trucks were not included in this study. It is 

unclear whether this hybrid methodology will have sufficient accuracies when applied to 

other types of injuries. Furthermore, the study analyzed only the accident reports within the 
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period January 2000 to December 2012. Data included in this analysis were limited to that 

provided in the MSHA incident reports which have been collected, organized, and released 

to the public by NIOSH. Increasing the level of detail provided in incident reports will likely 

result in improved injury clustering and classifications. It is also important to note that 

correlation does not equal causation and no causal relationships are implied based on the 

results of this analysis. A more in-depth analysis will be necessary to determine causal 

factors for injuries sustained in each cluster.

In conclusion, clustering, classification, and a hybrid methodology of both—using K-means 

clustering and gene expression programming—was shown to be effective when analyzing 

mining injury data. In particular, the GEP classification sub-model had a better performance 

than the traditional method of logistic regression in accident type classification. 

Furthermore, the identified patterns in the accident database using the clustering method are 

not achievable with the traditional injury data analysis which uses counts and cross-

tabulations. Therefore, determining the most dominant attributes for specific types of 

injuries (classification) and separating (clustering) the data based on these attributes may 

allow researchers to better understand the nature and causal factors of mining injuries. 

Clustering could likely improve traditional injury analysis methods. Injuries sustained in 

minerals processing mills and coal preparation plants, and injuries sustained during the 

operation of trucks, should be analyzed separately from larger datasets. The use of non-

powered hand tools for off-road truck inspections, ingress and egress from off-road trucks, 

and newer employees operating dump trucks should be investigated further to determine 

ways to prevent these severe and non-severe accidents. While this analysis was limited to 

those injuries associated with off-road trucks, it is expected that larger, broader injury data 

analyses will also benefit from this hybrid clustering-classification methodology.

5. Practical applications

Analyzing the injury data using data mining techniques provides some insight into attributes 

that are associated with high accuracies for predicting injury severity. Off-road truck-related 

injuries continue to plague the mining industry resulting in fatalities, permanent disabilities, 

and other less severe injuries. Many factors contribute to these injuries, and many of these 

are likely preventable. This analysis revealed that injuries associated with the use of non-

powered hand tools for off-road truck inspections, ingress and egress from off-road trucks, 

and newer employees operating dump trucks are areas deserving of attention to determine 

ways to prevent future injuries.
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Fig. 1. 
GP tree representation of Coshx/(C1sinx.).
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Fig. 2. 
Time series of off-road truck-related severe injuries at US mines (2000–2012).
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Fig. 3. 
Distribution of off-road truck-related accident types at US mines (2000–2012). Only, two 

Non-Occupational Fatalities occurred.
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Fig. 4. 
Distribution of mine operation type for severe injuries related to off-road trucks at US mines 

(2000–2012).
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Fig. 5. 
a Distribution of job experience (years) for severe injuries related to off-road trucks at US 

mines (2000–2012). b Distribution of job experience (years) for severe injuries vs. other 

injuries, related to off-road trucks at US mines (2000–2012).
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Fig. 6. 
Distribution of worker activity at the time of off-road truck-related severe injury in US mines 

(2000–2012).
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Fig. 7. 
The three GEP expression trees (Sub-ET 1, Sub-ET 2, and Sub-ET 3) for classification of 

the injury severity.
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Table 1

GEP tree key.

Symbol Definition

Functions

LT2A if x<y, then x, else y

3Rt x1/3

LT2G if x<y, then (x+y), else arctan(x*y)

GOE2E if x>=y, then (x+y), else (x*y)

OR1 if x<0 OR y<0, then 1, else 0

OR2 if x>0 OR y>0, then 1, else 0

Avg2 avg(x,y)

Exp Exponential

Atan Arctan

X2 X2

Exlpanatory Variables

d0 Subunit

d1 Month of the year

d2 Activity

d3 Job Experience

d4 Operation

J Safety Res. Author manuscript; available in PMC 2017 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dindarloo et al. Page 21

Table 2

GEP classification accuracies.

Injury classification Accuracy (%)

GEP Logistic regression

Training Severe 74.68 61.24

Other 64.33 53.62

Testing Severe 63.04 49.59

Other 64.69 51.13
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Table 3b

Activity code definitions.

Code Description

1 Getting on/off truck

2 Handling supplies/materials

3 Idle (Lunch, break, etc.)

4 Machine maintenance/repair

5 Operating truck

6 Other
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Table 3c

Operation code definitions.

Code Description

1 Coal operator

2 Metal operator

3 Non-metal operator

4 Stone operator

5 Sand and gravel operator

6 Coal contractor

7 Non-coal contractor
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Table 3d

Subunit code definitions.

Code Description

1 Underground operations

2 Surface at underground

3 Surface: strip or open pit mining

4 Auger

5 Culm banks

6 Dredge

7 Other surface

8 Independent shop and yards

9 Mill or preparation plant

10 Office
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Table 4

Cluster definitions.

Cluster Label

0 Accidents related to minerals processing mills and coal preparation plants (91%). More than two-thirds of the victims in this cluster 
had job experiences of less than 5 years. This cluster is associated with the highest percentage of severe injuries (22 severe accidents, 
3.4%). Almost 50% of all accidents in this cluster occurred at stone operations.

1 In 55% of the cases in this cluster, the victim had been inspecting the truck for maintenance/repair and using non-powered hand 
tools. Most of these accidents occurred at coal or stone operations. This cluster was not associated with any severe accidents.

2 No accidents occurred during the first half (January through June) of the year. Half of these victims were injured while getting on or 
off equipment, machines, etc. The average job experience for this cluster is less than 5 years. Also, the percentage of fatalities in this 
cluster is considerable. The cluster contains the highest absolute number of severe injuries, 58 victims.

3 In this cluster, 62% of all incidents occurred when the victim was either running or walking. No severe injuries were recorded in this 
cluster.

4 The second highest number of severe accidents occurred in this cluster (45 accidents). Over half of the accidents occurred when 
equipment operators with less than 5 years of experience (57%) were driving dump trucks (activity code 5).
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